~% CENGAGE
% learning'
Professional = Technical » Reference

Beginning
Game Programming

Fourth Edition

Jonathan S. Harbour

-‘I

Cengage Learning PTR

CENGAGE
Learning’

Professional » Technical » Reference

"BEGINNING GAME
PROGRAMMING,
FOURTH EDITION

JONATHAN S. HARBOUR

Australia « Brazil « Japan « Korea « Mexico

« Singapore « Spain « United Kingdom « United States

CENGAGE
i~ learning

Professional » Technical « Reference

*»

Beginning Game Programming,
Fourth Edition
Jonathan S. Harbour

Publisher and General Manager,
Cengage Learning PTR: Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Senior Marketing Manager:
Mark Hughes

Senior Product Manager: Emi Smith

Project Editor/Copy Editor:
Cathleen D. Small

Technical Reviewer: David Calkins
Interior Layout Tech: MPS Limited
Cover Designer: Mike Tanamachi
Indexer: Kelly Talbot Editing Services

Proofreader: Kelly Talbot Editing
Services

© 2015 Cengage Learning PTR.

CENGAGE and CENGAGE LEARNING are registered trademarks of Cengage
Learning, Inc., within the United States and certain other jurisdictions.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by any
means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit
all requests online at cengage.com/permissions.

Further permissions questions can be emailed to
permissionrequest@cengage.com.

All trademarks are the property of their respective owners.
All images © Cengage Learning unless otherwise noted.
Library of Congress Control Number: 2014932088

ISBN-13: 978-1-305-25895-2

ISBN-10: 1-305-25895-9
eISBN-10: 1-305-25910-6

Cengage Learning PTR

20 Channel Center Street

Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions
with office locations around the globe, including Singapore, the United

Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region.

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

For your lifelong learning solutions, visit cengageptr.com.

Visit our corporate website at cengage.com.

Printed in the United States of America

1234567161514

For my mother, Vicki Myrlene Harbour

FOREWORD |

“I want to be a game designer; how do I get a job?” This is a question I field very often
when I do interviews or talk to students. I've even been accosted by the parents of an
apparently gifted teenager as I left the stage with my band. My usual answer is, “So, what
have you designed?” The vast majority of the time, I am given a long explanation about
how the person has lots of great ideas but is in need of a team to make them a reality. My
response to this is to try to explain how everyone I work with has great ideas, but only a
small percentage of them are designers.

I don’t mean to be harsh, but the reality is that there are no successful companies out
there that will give someone off the street a development team for 18+ months and a
multimillion-dollar budget without some sort of proof of concept. What sets someone
like Sid Meier (legendary game designer with whom I'm honored to work at Firaxis
Games) apart is his ability to take an idea and make something fun out of it.

Of course, Sid now gets large teams to do his projects, but he always starts the same way—
a team of one cranking out prototypes cobbled together with whatever art and sound he
can either dig up or create himself. It’s these rough proofs of concept that allow people
uninvolved with the creation process to immediately see the fun in a given idea, and
that’s what gets you a budget and a team. Every budding designer should take note and
ask, “What would Sid do?”

Foreword v

That’s when a book like this is invaluable. I became acquainted with Jonathan a few
years ago when I picked up the first edition of this book at the bookstore at the Game
Developer’s Conference. A programmer buddy of mine helped me pick it out from
among numerous similar books. He thought it was very well written and thought the
emphasis on DirectX would be very applicable to what we do at Firaxis.

Another buddy mentioned that he had read Jonathan’s work on programming the Game
Boy Advance and was very impressed. In my opinion, they gave me great advice, and I
enjoyed myself immensely while working through the book. While reading, I noticed
that Jonathan was a big fan of our Sid Meier’s Civilization series. I contacted him because
I have worked on numerous Civ titles, and we have kept in contact ever since.

The beauty of a book like this is that it takes away all of the excuses. It provides an excel-
lent introduction into game programming. It takes you by the hand and walks you
through the seemingly complex process of writing C++ code and using DirectX. Before
you know it, you'll have a fully usable framework for bringing your ideas to life. In other
words, you will have all the tools you need to start making prototypes and prove that you
are much more than just someone with great ideas. Believe me, taking this crucial next
step will put you at the top of the heap of people looking for jobs in the industry. You
will have the ability to stand out, and that’s vital when so many people are clamoring for
work in game development.

So, what would Sid do? Well, when he was prototyping Sid Meier’s Railroads!, he wrote
the entire prototype in C. He didn’t have an artist (they were all busy on another title at
the time), so he grabbed a 3D art program, made his own art, and threw it in the game—
often using text labels to make sure players knew what things were in the game. He used
audio files from previous Firaxis games and the Internet, and sprinkled them around
to enhance the player’s experience. He created something—in a fairly short amount of
time—that showed our publisher and others just how much fun the game was going to
be. And he did it on his own...just like the “old days” when he worked from his garage.

So what should you do? Well, if you want to get a job in the industry as a game designer,
or even if you just want to make a cool game to teach math to your daughter, you should
buy this book. Jump in and work through the exercises and develop the beginnings of
your own game library—Sid has some code he’s used since the Commodore 64 days. Let
your imagination run wild and then find ways to translate your ideas into something
people can actually play. Whatever you do, just do something. It’s the one true way to

vi Foreword

learn and develop as a designer, and it is your ticket to finding game-designer fulfillment
and maybe even a job. And if Sid wasn’t Sid and didn’t already have all of those tools at
his disposal, it just might be what he would do, too.

Barry E. Caudill

Executive Producer
Firaxis Games

2K Games

Take 2 Interactive

ACKNOWLEDGMENTS |

I am thankful to my family for their understanding and support while preparing this
new edition. Many thanks to the editors: Cathleen Small, David Calkins, and Emi Smith.
And to the readers who have offered suggestions, comments, and errata over these past
10 years—thank you!

vii

ABOUT THE AUTHOR

Jonathan Harbour has written 19 books, mainly covering game development for PCs,
with a few covering consoles and phones. After 15 years in the sweltering heat of Phoenix,
he fled to Ohio with his wife and four kids, only to face Antarctic-like subzero winters
and steaming, humid summers. But at least it’s not a dry heat! He can be reached at
jharbour.com.

viii

CONTENTS

PART |
Chapter 1

Chapter 2

Introduction e e XV
INTRODUCTION TO WINDOWS ANDDIRECTXccicuunnn 1
Getting Started with Windows a.t. 3
An Overview of Windows Programming., 4
“Getting” WINdoWS oo e 5
Understanding Windows Messaging.ttt 6
Multi-Taskingo e 8
Multi-Threadingt e 9
Event Handling. i e e e 10
A Quick Overview of DireCtXottt e e e e 11
What Is Direct3D 2. . ..ot e 12
The Basics of a Windows Program.t iiiiie e 13
Creating Your First Win32 Project e 13
Understanding WinMain e 25
A Complete WinMain. 27
What You Have Learned i e 29
ReVieW QUESTIONS . . . ottt e e e e e e e e e e e e e 30
ON YOUr OWN . . e e e 31
Listening to Windows Messages.coiiriiinnnnnnnnnnn. 33
Writing a Windows Programt e 34
Understanding Initinstance 45

X Contents

Chapter 3

PART Il
Chapter 4

Chapter 5

Understanding MyRegisterClass.t 47
Exposing the Secrets of WinProc.t 50
What Is @ Game Loop? oo e 54
The Old WinMain e 55
WinMain and LoOpingottt e 57
The GamelLoop Project.t 60
Source Code for the GamelLoop Program, 60
What You Have Learned i e 68
ReVieW QUESTIONS . . . ittt e et e e e e e e e e e 69
ON YOUr OWN . . e e 70
Initializing Direct3Dot e e Al
Getting Started with Direct3Do it e 72
The Direct3D Interfaceso e 72
Creating the Direct3D Object.t e e 73
Your First Direct3D Project.ottt e e 75
Direct3D in Full-Screen Mode 86
What You Have Learned i e 92
ReVieW QUESTIONS . . . ottt e e e e e e e e e e e 92
ON YOUr OWN . e e e e e e e e 93
GAME PROGRAMMING TOOLBOX.t it i i e e eennees 95
Drawing Bitmapso e e 97
Surfaces and Bitmapso vt e 98
The Primary Surfaces e i e 101
Secondary Off-Screen Surfaces. i 101
The Create Surface Example 104
Loading Bitmap Files i e e 109
The Draw Bitmap Program. 110
Recycling Codeot e 116
What You Have Learned i e 116
ReVieW QUESTIONS . . . ottt e e e e e e e e e e 117
ON YOUr OWN . . e 118
Getting Input with the Keyboard, Mouse, and Controller. 119
Keyboard Input. e 120
Directinput Object and Device.ottt e 120
Initializing the Keyboard 122

Reading Key Pressesot e e e e e 123

Chapter 6

Chapter 7

Contents Xi

Mouse INPUL e e 124
Initializing the Mouse. e e e 124
Readingthe Mouse i e 125

Xbox 360 Controller Input 127
Initializing XINput. e e e 128
Reading the Controller State. i 129
Controller Vibration 131
Testing XINputo e 131

A Brief Introduction to Sprite Programming., 138
A Useful Sprite Struct. 141
Loading a Sprite Image 142
Drawing a Sprite Image e 142

Bomb Catcher Game. 143
Y YAV T e [0 V3o o o 145
MyDirectX.h ..o e e 147
Y14 1T =Tt o € o o 150
1Y A CT=T o 4T of o] « 2 155

What You Have Learned i 160

ReVieW QUESTIONS . . .ottt e e e e e e e e e e e e e e e 161

ON YOUr OWN . . e 162

Drawing and Animating Sprites 163

What Is @ Sprite?. e e e 164

Loading the Sprite’sImaget e 164

Drawing Transparent Sprites e 167
Initializing the Sprite Renderer 167
Drawing Transparent Spritest e 169

Drawing an Animated Sprite. 177
Working with Sprite Sheets 178
The Animate Sprite Demo i e 181

What You Have Learned it 185

Review QUESTIONS . . .o ot e e e 186

ON YOUr OWN . e e e e e e e e 187

Transforming Spritest e 189

Sprite Rotationand Scaling 190
2D Transforms. . .. oo e 192
Drawing a Transformed Sprite. i 197
The Rotate Scale Program e 198

Animation with Transforms 201

Xii Contents

Chapter 8

Chapter 9

Chapter 10

What You Have Learned it e e 205
ReVieW QUESTIONS . . . ottt e e e e e e e e e e 206
ON YOUr OWN . . e e 207
Detecting Sprite Collisions., 209
Bounding-Box Collision Detection. 210
Working with Rectangles. 210
Writing the Collision Function. 212
A New Sprite Structure. 213
Adjusting for Sprite Scaling 213
The Bounding Box Demo Programc.ouiuitinnennnnenanenn. 214
Radial Collision Detectiont e 219
Calculating Distance. ot e e e 219
Codifying Distancet 220
Testing Distance-Based Collision 222
What You Have Learned i e 222
Review QUESTIONS . . .o oot e e 223
ON YOUr OWN . . e e 224
Printing Text.t i i i e 225
Creating a Font. e 226
The Font Descriptor e e e 226
Creatingthe Font Object i i e 227
A Reusable MakeFont Function........... i 227
Printing Text with ID3DXFont o e 228
Printing with DrawText i e e 228
Wrapping TeXto e 229
Testing FONt OUtpUL. o e e e 230
What You Have Learned i e 233
ReVieWw QUESTIONS . . . ottt e e e e e e e e e e e 234
ON YOUr OWN . o e e e e e e e e e 235
Scrollingthe Background. 237
Tile-Based Scrolling.o e e 238
Backgrounds and Scenery e 239
Creating Backgrounds from Tiles. i 240
Tiled Scrollingo oot 241
Dynamically Rendered Tiles it e e 247
The Tile Map. . .o e e 248
Creating a Tile Map Using Mappy« oo v it e 249

The Tile Dynamic Scroll Project e 255

Chapter 11

Chapter 12

Chapter 13

Contents Xiii

Bitmap Scrollingo e e 262
Theory of Bitmap Scrolling. e 263
Bitmap Scrolling Demo.ot e 264

What You Have Learned i e 267

ReVieWw QUESTIONS . . .ottt e e e e e e e e e e 268

ON YOUr OWN . . e e 269

Playing Audiot e 271

Using DirectSound i e 272
Initializing DirectSound e 273
Creatinga Sound Buffer. 274
LoadingaWave File. e e e e 274
Playing a Sound e e 275

Testing DirectSound e 276
Creatingthe Project i e e 277
Modifying the MyDirectX Files i 278
Modifying MyGame.CpP. . .« oottt 280

What You Have Learnedt 287

ReVieW QUESTIONS . . . ottt e e e e e e e e e e 288

ON YOUr OWN . o e e e e e e e 289

Learning the Basicsof 3D Rendering 291

Introduction to 3D Programmingttt 292
The Key Components of 3D Programming, 293
The 3D SCENE . . ot 293
Moving to the Third Dimension. 299
Grabbing Hold of the 3D Pipeline. 300
Vertex Buffers. 302
Rendering the Vertex Buffer 304
Creatinga Quad i e e e 305

The Textured Cube Demo ot e e 308

What You Have Learnedt 318

Review QUESTIONS . . . oot e e e e 319

ON YOUr OWN . ot e e e e e e e e e e 320

Rendering 3D Model Files 321

Creating and Rendering Stock Meshes 322
Creatinga Stock Mesh i i e e 322
Drawing Stock Meshes e 324
Writing the Shader Code 325

The Stock Mesh Program i e et 326

Xiv Contents
Loading and Renderinga Model File 329
Loading a X File. i e e e 330
Rendering a Textured Model. i 335
Deleting a Model from Memory i 336
The Render Mesh Program. i e 337
What You Have Learned o i e 346
Review QUESTIONS . . . o oot e e e e e 347
ON YOUr OWN . . e e 348
Chapter 14 The Anti-VirusGame¢iiiiiiinnnnnnnnnnnnnns 349
The Anti-Virus Game e 350
Playingthe Game i e e e e 350
The Game's Source Codeottt e e 361
What You Have Learned o i e 391
ReVieW QUESTIONS . . . ittt e e e e et e e e e e e e 392
ON YOUr OWN . o e e e e e e e e e e e e 393
PART Il APPENDIXES i it ittt i 395
Appendix A Configuring Visual Studio 2013.............. ..., 397
Installing . . .o e 397
Creatinga New Project i e e e 398
Changing the Character Set. i i e 404
Changing the VC++ Directoriest e 405
Appendix B Chapter QUiz AnSWersttt it i 407
Chapter 1 .. e e e e 407
Chapter 2 .. 408
Chapter 3 .. e e e 409
Chapter 4 ... e e e 410
Chapter 5 ..o 410
Chapter 6 ... a1
Chapter 7 . e e e 412
Chapter 8 ... e 413
Chapter O ... e 414
Chapter 10 e e 415
Chapter 11 .. e e 416
Chapter 12 ... 417
Chapter 13 . e e 418
Chapter 14 .. e e e 419
14T 1= 421

INTRODUCTION |

Welcome to the adventure of game programming! I have enjoyed playing and program-
ming games my whole life, and probably share the same enthusiasm for this subject that
you do. Games were once found within the realm of Geek Land, where hardy adventurers
would explore vast imaginary worlds and then struggle to create similar worlds on their
own; meanwhile, out in the real world, people were living normal lives: hanging out with
friends, going to the movies, cruising downtown, and playing MMOGs.

Why did we choose to miss out on all that fun? Because we thought it was more fun to
stare at pixels on the screen? Precisely! But one man’s pixel is another man’s fantasy world
or outer-space adventure. And the earliest games in “gaming” were little more than globs
of pixels being shuffled around on the screen. Our imaginations filled in more details than
we often realized when we played the primitive games of the past.

So, what’s your passion? Or rather, what’s your favorite type of game? Is it a classic arcade
shoot-"em-up, a fantasy adventure, a real-time strategy game, a role-playing game, a
sports-related game? I'd like to challenge you to design a game in your mind while reading
this book, and imagine how you might go about creating that game as you delve into each
chapter.

This book was not written to reminisce about light subjects like game design, with a few
patchy code listings and directions on where to go next. I really take the subject quite seri-
ously and prefer to give you a sense of completion upon finishing the last chapter. This is
a self-contained book to a certain degree, in that what you will learn is applicable toward
your own early game projects. What you will learn here will allow you to write a complete

XV

XVi Introduction

game with enough quality that you may feel confident to share it with others (assuming
your artwork is decent).

This book will teach you how to write DirectX code in the C++ language using Visual
Studio 2013. Game programming is a challenging subject that is not just difficult to mas-
ter; it is difficult just to get started. This book takes away the mystery of game program-
ming using the tools of the trade. You will learn how to harness the power of DirectX to
render 2D and 3D graphics.

You will learn how to write a simple Windows program. From there, you will learn about
the key DirectX components: rendering, audio, input, fonts, and sprites. You will learn
how to make use of the DirectX components while studying code that is easy to under-
stand at a pace that will not leave you behind. Along the way, you will put all of the new
information gleaned from each chapter into a game library that you can reuse for future
game projects. After you have learned all that you need to know to write a simple game,
you will see how to create a side-scrolling shoot-’em-up game!

TENTH ANNIVERSARY!

This new fourth edition marks the tenth anniversary since Beginning Game Programming
was first released, way back in 2004! Keeping a book on this subject viable for so long has
been hard work! This edition is leaner and meaner than preceding editions, with more
emphasis on game-play topics at the beginner level.

The first edition came out in 2004 during a transition period for DirectX, which was
quickly evolving from 9.0b to 9.0c—which has remained the mainstay since. This edition
covered 3D modeling to a limited degree, showing via tutorial how to create a 3D car
using free 3D modeling software, and then how to load and render it as a model file. But
the emphasis remained primarily on sprite programming using Visual Studio 2003.

The second edition came out in 2006 to address quite a few changes to DirectX that made
it difficult to compile the original sources, such as changes to the DirectSound files. Fea-
turing support for the new Visual Studio 2005, this edition became an academic favorite
for several years.

The third edition came out in 2009 and was a massive rewrite with an update to Visual
Studio 2008. Every chapter was affected. Many were combined and reorganized to be
leaner and more focused. Support was added for Xbox 360 controllers via XInput. This
edition would continue to sell for five years!

Introduction XVii

ACADEMIC ADOPTION

The chapter structure and content remains largely the same as that found in the third
edition, in order to maintain existing academic support. New details have been added to
support Visual Studio 2013, along with a new configuration tutorial in Appendix A,
“Configuring Visual Studio 2013.” All figures throughout the book have been reshot for
this new edition using Visual Studio 2013. Since most of the core source code remains
unchanged, existing exams and lectures based on the book will remain usable. The final
game in the last chapter has been updated but not dramatically changed.

WHAT WILL YOu LEARN?

My philosophy for game development is neither limited nor out of reach for the average
programmer. I want to really get down to business early on and not have to explain every
function call in the standard C++ library. Game programming is not something that you
just pick up after reading a single book. Although this book has everything you need to
write simple 2D and 3D games, no single book can claim to cover everything, because
game development is a complex subject.

I am confident that you will manage to follow along and grasp the concepts in this book
just fine without a C++ primer, but a primer will give you a very good advantage before
getting into Windows and DirectX. This book does not teach the C++ language; it jumps
right into DirectX quickly, followed by a new subject in each chapter, so you will want to
have a working knowledge of C++.

This book was written in a progressive style that is meant to challenge you at every step,
and relies on repetition rather than memorization. I don’t cover a difficult subject just
once and expect you to know it from that point on. Instead, I present similar code sections
in each program so you’ll get the hang of it over time.

You will learn to use the DirectX SDK to make a game in the final chapter. You will dive
into Direct3D headfirst and learn about surfaces, textures, models, fonts, and sprites (with
animation). Since this book is dedicated to teaching the basics of game programming, it
will cover a lot of subjects very quickly, so you'll need to be on your toes! Each chapter
builds on the one before, but each chapter covers a new subject, so if there is any one sub-
ject that you are interested in at the start, you should be able to skip ahead without feeling
lost. However, the game framework built in this book does refer back to prior chapters.

XViii Introduction

VISUuAL STubpio 2013

The programs in this book were written with Microsoft Visual Studio 2013. The complete
source code projects can be downloaded from the Cengage website (www.cengageptr.com/
downloads) or from the author’s website. The projects are in Visual Studio 2013 format,
since that is the latest version at this time. You can download the free Express Edition
of Visual Studio 2013 from Microsoft at http://www.visualstudio.com/en-US/products/
visual-studio-express-vs. (Or, since web pages change frequently, you can perform a web
search for “Visual Studio Express.”)

CoNVENTIONS UseD IN THIS Book

The following style is used in this book to highlight portions of text that are important.
You will see such boxes here and there throughout the book.

Advice

This is what an advice pop-out looks like. Advice pop-outs provide additional information related to the text.

Book SUMMARY
This book is divided into three parts:

B Part I: Introduction to Windows and DirectX. This first part provides the
information you will need to get started writing Windows code and initializing
Direct3D.

B Part II: Game Programming Toolbox. This large part covers all of the relevant
components of DirectX, including images, sprites, input devices, audio, rendering,
shaders, collision detection, and basic game-play mechanics.

B Part III: Appendixes. This part includes the two appendixes.

CoMPANION WEBSITE DOWNLOADS

You may download the companion website files from www.cengageptr.com/downloads.

PART |

INTRODUCTION TO WINDOWS
AND DIRECTX

This first part provides an introduction to the Windows Application Programming Inter-
face (API), which is an important foundation you’ll need before learning DirectX. The
first two chapters will give you an overview of how Windows works by explaining how
to write a simple Windows program, how the Windows messaging system works, and
how to create a message loop (which allows a program to “see” events). The third chapter
gives a brief introduction to DirectX, wherein you will learn how to create a Direct3D ren-
dering device and set up the rendering system.

B Chapter 1, “Getting Started with Windows”
B Chapter 2, “Listening to Windows Messages”
B Chapter 3, “Initializing Direct3D”

This page intentionally left blank

CHAPTER 1

GETTING STARTED - .
wiTH WINDOWS

© Clipart.com.

Programming a video game is one of the most enjoyable ways to learn a new language,
such as C++. A video game is both a work of art and a technical achievement. Many tech-
nically impressive games are under-appreciated if they aren’t considered fun, while less
complex games might achieve worldwide fame. Regardless of your goals as a programmer,
programming a game may be one of the most enjoyable hobbies you have ever pursued.
Just be prepared for an equal amount of frustration and exhilaration—I hope you’re ready
for the adventure that is about to begin! This chapter provides the crucial information

3

4 Chapter 1 M Getting Started with Windows

necessary to get started writing Windows programs, leading into the next chapter, which
provides an overview of Windows messaging.

In this chapter, I am going to show you what a simple Windows program looks like. This
is valuable information you will need in the following three chapters, which build on this
knowledge to take you into the world of DirectX. These introductory topics will come
back to haunt you later on if you have not spent a little time with them, as the chapters
to follow will rely on your basic understanding of how Windows works. It will be very
helpful if you have some experience writing Windows programs already, but I won’t
assume you do. Instead, I'll just cover the basics of a Windows program—all that is neces-
sary to start writing DirectX code.

Windows programming is actually quite fun once you get the hang of it! While some of
the code might look like a foreign language, it will soon be second nature to you. If you
feel a bit overwhelmed by the amount of information, don’t worry too much about mem-
orizing details, since you will be using this code over and over again. We're going to learn
to write a simple Windows program first; you will create a new project in Visual Studio,
type in the code, and run it. Here is what you will learn:

B How to put game programming into perspective
B How to choose the best compiler for your needs
B How to create a Win32 Application project

B How to write a simple Windows program

AN OVERVIEW OF WINDOWS PROGRAMMING

If you're new to Windows programming, then you're in for a treat, because Windows is a
fun operating system to use for writing games. (This was not always the case, though!)
First of all, there are so many great compilers and languages available for Windows. Sec-
ond, it’s the most popular operating system in the world, so any game you write for Win-
dows has the potential to become quite popular. The third great thing about Windows is
that we have the amazing DirectX SDK at our disposal. Not only is DirectX the most
widely used game programming library in existence, it is also easy to get into. Now, don’t
misunderstand my meaning—DirectX is easy to learn, but mastering it is another matter. I
will teach you how to use it—and wield it, so to speak—to create your own games. Mas-
tering it will require a lot more work and knowledge than this single book provides.
Studying DirectX is a very worthwhile way to spend your time, especially if you want to
get up to date with the latest research in game development (since most articles and books
on game development today focus on DirectX).

An Overview of Windows Programming 5

There are some very exciting services available for PC gamers today that make PC gaming
more consistent than it may have been in the past, such as Steam by Valve Software, Inc.
If you create your own compelling video game using Windows and DirectX, you have the
ability to earn some money by selling it on Steam (although there is a process to follow).
For more information about Steam, check out http://store.steampowered.com. Steam is
very “indie friendly,” meaning they support indie game developers. By adding the Steam
library to your game, you can take advantage of features such as achievements. I mention
this right away because it is helpful for aspiring game designers and programmers to get
their games out in the market and get noticed, and this is the best way I know of today to
achieve that goal.

Before you can start writing DirectX code, you will need to learn how Windows handles
messages. So let’s start at the beginning. What is Windows?

Windows is a multi-tasking, multi-threaded operating system. What this means is that
Windows can run many programs at the same time, and each of those programs can
have several threads running as well. As you might imagine, this operating system archi-
tecture works well with multi-core processors.

Advice

The programs featured in this book were tested on a PC with an Intel i5 quad-core CPU, 16GB DDR3 RAM, and
an Nvidia GeForce 660 GTX 2GB video card. At the time of this writing, this PC is upper—middle class in
performance and will run most games at the highest settings with a decent frame rate.

“Getting” Windows

Few operating systems will scale as well as Windows from one version to the next. The
numerous versions of Windows that are in use—primarily Windows 7 and 8 at the time
of this writing—are still so similar that programs compiled for one version of Windows
will run without changes on other versions as well (such as Windows XP, which is quite
old at this date). For instance, a program compiled with Microsoft Visual C++ 6.0 back
in 1998 under Windows NT 4.0 or Windows 98 will still run on the latest versions of
Windows. You may even have a few games in your game library that came out in the
late 1990s that supported an early version of DirectX. It should come as no surprise that
those older games usually still run on newer PCs. This is very helpful because we can rely
on the platform running our code for years to come. This is an area that console develo-
pers have enjoyed in the past (hardware consistency) but that often has been a source of
difficulty for Windows game developers. You can rely on a console system (such as the
Xbox 360) remaining the same for several years, while PC specifications vary widely and

6 Chapter 1 M Getting Started with Windows

evolve very rapidly. Technical issues make it very difficult for game publishers to deal with
customers using sub-par computer systems to run modern games.

So we have established that Windows programs have great longevity (also known as “shelf
life” in the software industry). What can Windows really do?

Advice

Whenever | refer to “Windows” in this book, I'm including every recent version of Windows that is relevant to
the topic at hand—that is, PCs and game programming. This should include all previous, current, and future
versions of Windows that are compatible. For all practical purposes, this really is limited just to 32-bit
programs, since we won't be covering 64-bit programming. You can assume any reference to “Windows"
applies to Windows 7, 8, and may also apply to Vista and XP.

Windows programming can be simple or complex, depending on the type of program you
are writing. If you have a development background with experience writing applications,
then you probably have a good understanding of how complex a graphical user interface
(GUI) can be to program. All it takes is a few menus, a few forms, and you will find your-
self inundated with dozens (if not hundreds) of controls with which you must contend.
Windows is very good as a multi-tasking operating system because it is message-driven.
Object-oriented programming proponents would argue that Windows is an object-
oriented operating system. In fact, it isn’t. The latest version of the Windows SDK today
is still similar in architecture to early versions of Windows (such as Windows 3.0). The
operating system is similar to the human nervous system, although not nearly as intricate
or complicated. But if you simplify the human nervous system in an abstract way, you'll
see impulses moving through the neurons in the human body from the senses to the
brain, and from the brain to the muscles.

Advice

Although 64-bit computing is the wave of the future, it will not be as big of an issue for programmers as the
16-t0-32 bit transition was, because the processors, operating systems, and development tools have been
evolving in unison, with the result being that the transition will go largely unnoticed (as it has already). Visual
Studio 2013 supports 64-bit code but it's not necessary to delve into that to write a high-performance
video game.

Understanding Windows Messaging

Let’s talk about a common scenario to help with the analogy of comparing an operating
system to the human nervous system. Suppose that some event is detected by nerves on

An Overview of Windows Programming 7

your skin. This event might be a change of temperature, or something may have touched
you. If you touch your left arm with a finger of your right hand, what happens? You “feel”
the touch. Why? When you touch your arm, it is not your arm that is feeling the touch,
but rather, your brain. The sense of “touch” is not felt by your arm, per se; rather, your
brain localizes the event so that you recognize the source of the touch. It is almost as if
the neurons in your central nervous system are queried as to whether they participated
in that “touch event.” Your brain “sees” the neurons in the chain that relayed the touch
message, so it is able to determine where the touch occurred on your arm. Now touch
your arm, and move your finger back and forth on it. What do you sense is happening?
It is not a constant “analog” measurement, because there are a discrete number of touch-
sensitive neurons in your skin. The sense of motion is, in fact, digitally relayed to your
brain. Now, you might refute my claim here by saying that the sense of pressure is analog.
We are getting into some abstract ideas at this point, but I would pose that the sense of
pressure is relayed to your brain in discrete increments, not as a capacitive analog signal.

How is this subject related to Windows programming? The sense of touch is very similar
to the way in which Windows messaging works. An external event, like a mouse click,
causes a small electrical signal to pass from the mouse to the USB port into the system
bus, which might be thought of as the nervous system of the computer. From there, the
signal is picked up by the operating system (Windows), and a message is generated and
passed to applications that are running (like your game). Your program, then, is like a
conscious mind that reacts to that “sense of touch.” The subconscious mind of the com-
puter (the operating system that handles all of the logistics of processing events) “pre-
sented” this event to your program’s awareness.

Adivce

It seems that over time, our information systems (computer networks) increasingly mimic the natural world;
perhaps when we have finally built the ultimate supercomputer, it will resemble a human brain?

There is yet another issue at hand. We humans have two sides to our brain. Remember
my comment about technology mimicking biological brains? It is common to find six-
and eight-core processors today! Multi-core systems were once exotic, high-performance
niche products, but they are the norm today, even in smartphones. When the first edition
of this book was published in 2004, multi-core processors were extremely rare; back then,
it was common to find a motherboard with two to four processors, each with a single core.

8 Chapter 1 M Getting Started with Windows

DirectX 9 or 11?

There are two versions of DirectX still in use today. This might seem strange, but DirectX 9 was so successful
that it has lasted for a decade, and a lot of game engines were designed for it. What does this mean for
anyone still programming games with DirectX 9? It means that it is still a reasonable starting point and is not
at all obsolete. Most professional game engines today still feature a low-end DirectX 9 version to support older
computers. That is not likely to continue much longer, since even the low-end computers tend to come with
very respectable hardware today.

The reason for the continued widespread support for DirectX 9 is that it supports older versions of Windows,
which are still widely used. DirectX 10 and 11 games will not run on Windows XP, while DirectX 9 code will
run on any modern version of Windows—which accounts for the continued popularity of DirectX 9. You can
continue to write DirectX 9 code for Windows 7 and 8, 32-bit and 64-bit.

Multi-Tasking

The discussion of multi-tasking is not as important for programmers today as it was a few
years ago, when single-core processors were the norm. It’s helpful to know how things
work “under the hood,” so to speak, even when most users take such things for granted.
Windows, like most operating systems today, uses preemptive multi-tasking. This means
that your PC can run many programs at the same time. Windows accomplishes this by
running each program for a very short amount of time, counted in microseconds, or mil-
lionths of a second. This jumping from one program to another very quickly is called time
slicing, and Windows handles time slicing by creating a virtual address space (a small
“simulated” computer) for each program in memory. Each time Windows jumps to the
next program, the state of the current program is stored so that it can be brought back
again when it is that program’s turn to receive some processor time. This includes proces-
sor register values and any data that might be overwritten by the next process. Then, when
the program comes around again in the time-slicing scheme, these values are restored into
the processor registers, and program execution continues where it left off. This happens at
a very low level, at the processor register level, and is handled by the Windows core.

Advice

If this sounds like a wasteful use of processor cycles, you should be aware that during those few microseconds,
the processor is able to run thousands of instructions. Modern processors already run at the gigaflop level, able
to easily crunch a billion math calculations in a short “time slice.”

The Windows operating system might be thought of as having a central nervous system of
its own—based on events. When you press a key, a message is created for that keypress
event and circulated through the system until a program picks it up and uses it. I should

An Overview of Windows Programming 9

clarify a point here, as I have brought up “circulation.” Windows 3.0 was a non-preemptive
operating system that was technically just an advanced program running on top of 16-bit
MS-DOS. These early versions of Windows were more like MS-DOS shells than true oper-
ating systems, and thus were not able to truly “own” the entire computer system. You
could write a program for Windows 3.0 and have it completely take over the system, with-
out freeing up any processor cycles for other programs. You could even lock up the entire
operating system if you wanted to. Early Windows programs had to release control of the
computer’s resources in order to be “Windows Logo” certified (which was an important
marketing issue at the time). Windows 95 was the first 32-bit version of Windows and
was a revolutionary step forward for this operating system family in that it was a preemp-
tive operating system (although it, too, still ran on top of a 32-bit MS-DOS).

What this means is that the operating system has a very low-level core that manages the
computer system, and no single program can take over the system, which was the case
under Windows 3.0. Preemptive means that the operating system can preempt the func-
tioning of a program, causing it to pause, and the operating system can then allow the
program to start running again later. When you have many programs and processes
(each with one or more threads) begging for processor time, this is called a time-slicing
system, which is how Windows works. As you might imagine, having a multi-processor
system is a real advantage when you are using an operating system such as this.

A quad- or hexa-core system is a great choice for a game developer. For one thing, SMP
(symmetric multiprocessing) processors usually have more internal cache memory. The
more processing power the better! While you may have had to shut down some applica-
tions while playing or developing a game in the past, a modern system can easily handle
many applications running at the same time while you are working on a game, and you
won’t notice any drag on the system. Of course, a ton of memory helps too—8GB of RAM
is crucial for game development today using 64-bit Windows 7 or 8.

Multi-Threading

Multi-threading is the process of breaking up a program into multiple threads, each of
which is like a separate program running. This is not the same as multi-tasking on the
system level. Multi-threading is sort of like multi-multi-tasking, where each program has
running parts of its own, and those small program fragments are oblivious of the time-
slicing system performed by the operating system. As far as your main Windows program
and all of its threads are concerned, they all have complete control over the system and
have no “sense” that the operating system is slicing up the time allotted to each thread
or process. Therefore, multi-threading means that each program is capable of delegating

